Singularities of mean curvature flow and flow with surgeries

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surveys in Differential Geometry XII Singularities of Mean Curvature Flow and Flow with Surgeries

We collect in this paper several results on the formation of singularities in the mean curvature flow of hypersurfaces in euclidean space, under various kinds of convexity assumptions. We include some recent estimates for the flow of 2-convex surfaces, i.e. the surfaces where the sum of the two smallest principal curvatures is positive everywhere. Such results enable the construction of a flow ...

متن کامل

Marangoni-driven singularities via mean-curvature flow

In this work, it is demonstrated that the existence and topology of the recently observed interfacial singularities driven by Marangoni effects can be deduced using mean-curvature flow theory extended to account for variations of interfacial tension. This suggests that some of the physical mechanisms underlying the formation of these interfacial singularities may originate from/be modeled by th...

متن کامل

Singularities of Lagrangian Mean Curvature Flow: Monotone Case

We study the formation of singularities for the mean curvature flow of monotone Lagrangians in C. More precisely, we show that if singularities happen before a critical time then the tangent flow can be decomposed into a finite union of area-minimizing Lagrangian cones (Slag cones). When n = 2, we can improve this result by showing that connected components of the rescaled flow converge to an a...

متن کامل

Singularities of Lagrangian Mean Curvature Flow: Zero-maslov Class Case

We study singularities of Lagrangian mean curvature flow in C when the initial condition is a zero-Maslov class Lagrangian. We start by showing that, in this setting, singularities are unavoidable. More precisely, we construct Lagrangians with arbitrarily small Lagrangian angle and Lagrangians which are Hamiltonian isotopic to a plane that, nevertheless, develop finite time singularities under ...

متن کامل

Mean curvature flow with obstacles

We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Surveys in Differential Geometry

سال: 2007

ISSN: 1052-9233,2164-4713

DOI: 10.4310/sdg.2007.v12.n1.a8